

f JSSS"3 re-i^-^^tiSfiKafflBB'WiKK'ESSSisW
,. = ..

SIM unlv Cl.issilir.itinn

,» DOCUMENT CONTROL DATA • R &. D
.'•.■i üMti < lay ^//ll .•((/■wi W f/r/i', hmly fl uli^lriii I HIM/ im/i'v/m; iimin/.ifiMn ninxl l.r vnlrriHl ivlirn Ihr ini'f.i,'/ trpnrl Ij. rlns.ilinl)

Carnegie-Mellon Universicy
Department of Computer Science
Pittsburgh, Pa. 15213

in. KEPon I !;i:cur<iTv CLAOOI nc A i ION

UNCLASSIFIED
ih. GROUP

hr po'i t in i.i.

C.ai: A COMPUTING ENVIRONMENT FOR AI RESEARCH

•1 IJCSCniF'T 1VC NOTES (Type ol report mnt Incluaivc llnlen)

Scientific Interim
5. AUTHORiSi (h'irst nflmt', middlt* initial, last nnmc)

G. Bell, P. Freeman, M. Barbacci, S. Bhatia, W. Broadley, R. Chen, L. Erman,
H. Goldberg, W. Huen, M. Knudsen, D. McCracken, A. Newell, R. Reddy, S. Rege,

G. Robertson.
0 REPORT OATC

May, 1971
7«. TOTAL NO. Of PACES

55
7b. NO. OF REFS

none
»». CONTRACT OR GRANT NO.

F44620-70-C-0107
h. PROJF.C T NO

A0827-5

61101D
,/,681304

9«. ORIGINATOR'S REPORT NUMHERO»

Oh. OTHER REPORT NOtS) (Any othor numhors that may be an si fined
this report)

AFOSR-Tn"-7 2-0 3,ro1
10 U1S ' HI ntjTlON 5 r A T PIMEN T

Approved for public release;
distribution unlimited.

11. '.lUPfl.F.MI.-N I ADV MOTES

TECH, OTHER

12. SPONSORING MILITARY ACTIVITY
Air Force Office of Scientific Rese
1400 Wilson Blvd.
Arlington, Va. 22209

A)

A computer for artificial intelligence research is examined. The design is
based on a large, straightforward primary memory facility (about 8 million 74 bit
words). Access to the memory is via at least 16 ports which are hardware protected;
there is dynamic assignmentof the memory to the ports. The maximum port bandwidth
is 8,600 million bits/sec. Processors for languages (e.g., LISP) and specialized
terminals (e.g., video input/output) can be reliably connected to the system during
operation. The approach is evolutionary in that high performance processors, such
as the Stanford AI Processor, can be connected to the memory structure, giving an
overall power of at least 100.times a PDP-10 (and 200 to 300 times a PDP-10 for
list processing languages) for 10 processors -- although 20 processors can be
attached.. Using this approach we might expect 40 - 80 million operations/second.

Afc 6He same time, special language processors (P.i) can be designed and
attached. These processors give even larger power increases, but for restricted
language use. Two processors, P.LISP and P.L*, were examined for the LISP and L*
languages and are reported on separately.

A plan for building the machine in increments over the next three to five
years is examined. Specific schedules are proposed.

Concurrent with the operation of the machine, there should be research
into the design of hardware, software and theory of constructing large scale
computing facilities with maximum modularity.

it|

DD.F.r.J473
Srcimiv C'lns-Jificjiiinn

.^—-,—~ra—^-......--..■-...-■..,.:■.,. .■■-.. ^ .,.■„.■ .,.—.^ --"|---T7-iniiiimijiUinwKui»«

C.ai: A COMPUTING ENVIRONMENT FOR AI RESEARCH

Overview, PMS and Operating System
Considerations

by

G. Bell (Co-Chalrman)

P. Freeman (Co-chairman)

and

M. Barbacci
S. Bhatia
W. Broadley
R. Chen
L. Erman
H. Goldberg
W. Huen
M. Knudsen
D. McCracken
A. Newell
R. Reddy
S. Rege
G. Robertson

Department of Computer Science
Carnegie-Melion University

Pittsburgh, Pa. 15213

May 7, 1971

Mriii. r^\

FEB n \m
u

pf* D

This work was supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and
is monitored by the Air Force Office of Scientific Research. Ty?
dnniimnnf- hnn hnnn OpprminH r 1 11 >■ n] uilioi ito-

Approved for public release:
rl 1 i-ii -m' Kn* <

-■ ■ ■■■.•■■;■■•;■.•..; ■ ■ - ■■■ - .■ --....■■.■..,.,

«.-w-^.^Wi^l-O-S.-.-l'A'*-^;'*

TABLE OF CONTENTS

Page
Abstract .1

Acknowledgments m n

Overview of the System 1

Requirements for AI Computing 1

Response to the Requirements 4

The PMS Structure of C.ai 10

Computer Performance 14

Interprocesscr Communication 14

Primary Memory 15

Secondary Memory ^ # # # ,22

Tertiary Memory , 23

Operating System Computer 24

Console .25

AMOS: A Minimal Operating System for C.ai 26

Design Goals and Guidelines 26

Functions to be Provided 27

World Views ..28

Structures Providing the Required Functions of AMOS 29

Performance Monitoring 34

Realization Considerations 36

Scheduling and Strategy for the Project 36

Contingencies and Research 37

New Processor Alternatives 39

Necessity to Modify the Stanford Al Processor 40

Economies of Scale , 41

Conclusions ,43

Appendix 1: Design Constraints and Some Consequences 44

Appendix 2: Outline of P.L* Processor Design 47

Appendix 3: Outline of P.LISP Processor Design 49

*!MM!fflBaBKM>BH»J(ffllflWayra^

ABSTRACT

A computer for artificial Intelligence research Is examined. The

design Is based on a large, straightforward primary memory facility

(about 8 million 74 bit words). Access to the memory is via at least

16 ports which are hardware protected; there is dynamic assignment of

the memory to the ports. The maximum port bandwidth is 8,600 million

bits/sec. Processors for languages (e.g., LISP) and specialized terminals

(e.g., video input/output) can be reliably connected to the system during

its operation. The approach is evolutionary in that high performance

processors, such as the Stanford AI Processor, can be connected to the

memory structure, giving an overall power of at least 100 times a PDP-10

(and 200 to 300 times a PDP-10 for list processing languages) for 10

processors — although 20 processors can be attached. Using this approach

we might expect 40 - 80 million PDP-10 operations/second.

At the same time, special language processors (P.A) can be designed

and attached. These processors give even larger power Increases, but

for restricted language use. Two processors, P.LISP and P.L^ were

examined for the LISP and L* languages and are reported on separately.

A plan for building the machine in increments over the next three

to five years is examined. Specific schedules are proposed.

Concurrent with the operation of the machine, there should be re-

search into the design of hardware, software and thaory of constructing

large scale computing facilities with maximum modularity.

^«s^^«^™^^^^««^^«^ ^>^«^«^^''esaee!m

ACKNOWLEDGMENTS

The basic PMS structure of C.ai and that of the L* and LISP language

processors was developed in the Carnegie-Mellon University Computer Science

Department, in a project seminar on list processing machines. This report

is based on the working papers developed in the CVAM seminar.

The group was informally organized and met frequently as a whole,

but the main work for the reports was carried out in the following sub-

groups:

CVAM:PMS - W. Broadley (Chairman), S. Bhatia, and S. Rege

Specification of PMS, circuitry, technology, and overall
performance.

CVAM:OS - P. Freeman (Chairman), S. Bhatia, L. Erman, W. Huen,
D. McCracken, R. Reddy and G. Robertson

Specification of an operating system.

CVAM:P.L* - D. McCracken and G. Robertson (Chairmen), R. Chen

Design of a hardwired processor for an L* kernel.

CVAM:P.LISP - M. Barbacci (Chairman), H. Goldberg, and M. Knudsen

Design of a hardwired processor for LISP.

Many members of the Carnegie-Mellon Computer Science Department served

as critics and consultants on the design, especially A. Kendziora,

J. McCredie, A. Newell, R. Reddy and W. Wulf. Alan Kay of Stanford also

interacted with the group frequently and in detail.

A draft of this document was presented at a working meeting held at

Bolt, Beranek and Newman in Boston, April 26-27, 1971. Representatives

ii

- V '.-.-';--u;i-^v^';V^'^--
v^>l-WWW^>t«^W«*WSS^

from the Advanced Research Projects Agency, Bolt, Beranek and Newman,

Carnegie-Mellon University, Massachusetts Institute of Technology,

Stanford Research Institute, Stanford University, and System Development

Corporation were present. Their comments and suggestions were of value

in preparing this final version.

Gordon Bell and Peter Freeman integrated the working papers into

this document and did the final editing.

iii

KWf^i^WMwmBvaMsaaiHaicM^ Wsmm&matptmmfeivotKem : , ■: ■■ ■ .ir-^Tn™»w««ra>H-:»v:p<-%-i."»<^..,ir(B,-

OVERVIEW OF THE SYSTEM

Consideration of the problem of designing and building an optimal

compute?; for ai research quickly leads one to the realization that there

may not: be a feasible solution. The numerous constraints, wide variations

in computing style, and the impossibility of defining the ai problem nar-

rowly seem to make this a certainty. Thus, the major premise of the

design we are about to present is that if one wishes to provide ai re-

searchers with better computing tools, one must, in fact, provide an

environment in which many varied tools may be developed and used. Our

design should be viewed as a specification of such an environment.

REQUIREMENTS FOR AI COMPUTING

In Bell and Newell's Computer Structures (McGraw-Hill, 1971) a

number of special function computers ranging from business to scientific

are described. The characteristics of machines used for ai research

appear to span this spectrum, exhibiting the max of each characteristic

attribute.

Memory Size

The primary memory is larger in an ai environment than with almost

all scientific computers because the local program data base is typically

larger than for scientific applications. Here we assume that the average

program size in this environment is 250,000 74-bit words (64 bits of

*
The PMS notation presented therein and used throughout this report is

based on seven primitive component types: P-processor, M-memory, S-switch,
L-link, K-controller, T-transducer, D-data operation. A computer composed
of primitive components is represented by C; hence, C.ai for "ai computen"

-2-

infoimatlon) and the working-set size is 100,000 74-bit words. The ratio

of secondary/primary memory we have proposed is quite low, based more on

the swapping mode of current PDP-10's, rather than a demand paging system.

A better model is needed to get a "balanced" or more "cost-effective"

system rather than take this worst case approach.

Processor Power

The central processor power requirement is less than the largest

scientific processor because the very large memory is accessed sequentially

(in relatively inefficient fashion). Thua, the more powerful facilities of

a scientific processor may go unused. Many ai processes are compute bound,

however, and need significant processor power in critical areas.

PMS Structure

The ai computer usually requires better communications facilities

to external equipment than either a scientific or a business computer.

Typically, these characteristics are like the process control computer,

except that higher data rates are involved for speech, video and mechanical

transducers which operate at human interaction rates. These considera-

tions are particularly critical for ai research groups engaged in robot,

hand-eye, and speech research.

The Instruction Set (ISP)

Typically, the ISP is the characteristic that usually comes to mind

when ai computing la discussed. These operations can be for a hardwired

stack, a garbage collector, hash-coding instructions on linked lists, etc.

On the other hand, a simple processor with good floacing point arithmetic

ii«™.is!OTBTOis«i^!^j.^!In«=,=M«ia0^^ - • ■ ■ -• ■ ■"- ■•'//."•:• ■•

-3-

seems to be adequate because decisions can be bound in software and later

changed.

There is almost uniform agreement (at the meetii^s on the ARPA list

processing machine) that a large (and probably linear) addressing space

is essential. The other noticeable point of agreement is that the PDP-10

instruction set with cnly a few modifications is all that is needed for

the immediate future.

There is clearly a need for general-purpose processors with clean

order codes and specialized instructions for characteristic ai processing

operations. But, in addition, the magnitude and closely defined nature of

many ai tasks makes it very desirable to have highly specialized processors

as well.

The PDP-10 As The Current ai Computer

Because the DEC PDP-10 is the current most popular machine for ARPA-

supported ai research, it is worth briefly examining the reasons for its

popularity.

1. Price: It is the only computer that the group can afford.
(A 360 Model 44 is also a candidate in this range that has
been overlooked and it is worth asking why.)

2. ISP: The instruction set is very straightforward, providing
power but with none of the anomonalies in addressing, instruc-
tion set size, data types, etc. that accompany most machines
(e.g., 360, 1108 or Sigma 7 family).

3. PMS Structure: The machine has been easily approachable by
all to Interconnect any kind of device from foreign memory to
TV camera. Indeed, the PMS structure, now eight years old,
is only being slightly revised to handle larger and faster
memories. This ease of interfacing was initially used inter-
nally by DEC to administer various memory and peripheral designs;
later, this policy boomeranged by allowing anyone to connect
any kind of memory to a PDP-10. In contrast, the IBM processor-
memory interfaces are usually so well guarded and obscure that

-4-

its own engineers can barely carry out designs (e.g., the
bus control unit in the model 65, 67 and 75).

4. Operating System: The monitor is small, relatively approach-
able and less bad than alternatives since it was based on CTSS
and the SDC time-sharing systems.

RESPONSE TO THE REQUIREMENTS

It is difficult if not impossible to obtain a more accurate character-

ization of what is meant by "ai computing" than what we have given above.

We have not been able to reach any agreement among ourselves or with

those with whom we have talked. It is clear that we should have a better

characterization; and we have stressed the need for measurement facilities

herein so that in the future we will better understand the nature of our

computing requirements. The diversity, of course, is such that ai comput-

ing is really equated with general computing. And therein lies the crux

of the problem»

Our response has been to design an environment that will demon-

strably improve by the needed factors our current ai computing resources

and, mo^e importantly, provide a context for the development of even more

powerful tools. In particular, it is clear to us that various groups must

be able to experiment with highly specialized processors (e.g., L*, signal

processing, etc.) in order to gain maximum power from the hardware. Yet

this experimentation must be evolutionary to guard against the transients

caused by switching everyone to a new machine at the same time.

This report examines the feasibility of designing a relatively large-

scale, simple computer which can provide such an environment for artificial

intelligence research. Several design goals that guided us are posited

in Appendix 1. The resultant design has the following characteristics:

asmmKsm&ssm&msammsssmisBSßmtglsBisis

-5-

1. Mg^ - A simple primary memory structure with 16 multiple

ports for connecting a variety of high speed processors

of the Stanford AI processor design, special language

processors, secondary memories and specialized i/o

transducers.

a. A primary memory size of 620 megabits with individual
port rates of 74, 148, 222 or 296 bits/port memory
access (550 ns); 135, 270, 405, or 540 megabits/sec
per port;

b. A total information rate to all ports of 2.1 to 8.6
gigabits/sec;

c. Memory port widths of 72+2 parity or 64+10 single
error correction and double error detection bits;

d. The 16 ports can be further demultiplexed to provide
more ports;

e. Each port has a memory port control for dynamically
reassigning 64k word blocks to each processor and
protecting the memory from neighboring processors.
The port control also includes statistics data
gathering and error control.

f. A mode of operation which provides nearly 100^
uptime.

2. Ms - Secondary memory bandwidth to allow swapping. The loading

time for a single 100,000 word program would be roughly .14

sec. The worst case swap time would be .3 seconds. Thus,

assuming five drums, 15 programs could be swapped per second.

3. P - Multiple approaches for providing processing power. These

range from a conventional PDP-10 to specialized hardwired list

processors. This permits development of highly functionally

specialized processors.

3a. PDP-10 central processors (KA10) modified to run the BBN

Tenex operating system could be used.

3b. The forthcoming DEC KIlO processor would provide at least a

factor of 2 improvement over the KA10.

3c. The Stanford AI processor (basically a PDP-10) could easily

be used and would provide:

a. A primary memory per processor of .8 million 74 bit
words assuming 10 processors, hence essentially a
factor of 8 times the memory of a maximum size PDP-10.

b. An instruction execution rate of roughly 10 times a
PL'P-IO for 1 processor or 100 times a PDP-10 for 10
processors.

c. Assuming a specially microcoded LISP interpreter or
compiler in the processor, the execution rate would
be a factor of 200 to 300 times a PDP-10.

d. A secondary memory rate of about 250 mesabits/sec
versus 10 for a PDP-10.

3d. An alternative design which we also discuss herein is incorporat-

ed in the overall framework using an approach based on special-

ized language processors (P.jJ) and processors for the operating

system. In this report we assume the use of a combination of

conventional processors of the Stanford variety and special

language processors. The mixture is unimportant, and the over-

all performance for list processing may only vary by a factor

of 2 to 4.

Two language processor designs have been explored for

interpreting the LISP and L* languages which show a speed-up

of 20 to 40 times a single PDP-10 processor or 200 to 400

-7-

times a PDP-10 for multiple procesaorB. The cost of these

processors appears to be quite low ($50,000-$100,000 each),

Tl ey are described In two reports of the CMU Computer Science

Department: "C.al (P.L*) -- An L* Processor for C.al,"

D. McCracken and G. Robertson, and "C.al (P.LISP) — A LISP

Processor for C.aij' M. Barbaccl, H. Goldberg, and M. Knudsen.

The abstracts of these reports appear as Appendices 2 and 3

of this report.

3e. Another alternative would be to construct a central processor

to give an instruction encoding improvement over the PDP-10.

For examplcj a processor based on the stack and instruction

format of the PDP-11 might be desirable. This approach may

allow high performance processors to be built more easily.

4. Modularity in PMS structure. Here we hope to do significantly

better than the PDP-10 by providing better protection among

the processors at the memory ports. We believe that it will

never be necessary to turn off computer power for any reason

(except for cooling equipment failure).

5. Uniform Interprocessor communication. A second type of inter-

face has been added which has a protocol like the PDP-11 and

allows intercommunication among the various processors. Like

the PDP-1Ö i/o and memory busses, this type bus should be able

to be used over a significant period of time. It allows the

transmission of data at high rates. Unlike most other busses.

this type of bus (called Unlbus in PDP-11) allows all components

to be at the same level of the hiesrarchy; thus, all components

communicate with one another easily.

6. In the design of the language processors, we have discovered

that multiple caches can be used effectively. The language

processor designs each use two caches, giving us roughly a

factor of two gain in parallelism within the processor. One

cache is used to hold the interpreter (data which is only read)

and might normally have been called the microprogram memory.

The second cache holds the program (instructions and data)

being interpreted. A third cache might possibly control an

execution unit fot, say, typed data, etc.

7. The operating system is evolved from our current operating

systems. The main assumptions are that the network will carry

out many of the operating system functions. The remaining

functions will be distributed throughout the system on various

specialized software controllers (e.g., at file swapping, memory

and tertiary memory sites).

8. The facility should be an ARPA network resource, but with sur-

rounding laboratory facilities to make the operation of the

computer reliable, but yet extensible. This mode of operation

is similar to current usage at many ARPA contractor sites. For

example, using the memory for video input and output, experi-

ments would require only 45 megabits/sec port to memory. TWo

resources would be required.

■9-

a. A large inventory of modules that would facilitate
design of special experiments. The module types
would include: caches, general purpose microprogram
controls, arithmetic units, buffers (queues), port
switches (to increase the number of memory ports),
mapping, interfaces to other computers, component
exercisors, etc.

b., Programmers and engineers to carry out many of the
designs and assist in system integration of the devices.

The design as proposed would operate at a single central

site to give large memory and to decrease the operating cost.

However, the design and the construction strategy are such that

at almost anytime in the project the machine could be partitioned

physically for multiple site operation. The most practical

size for economy and reliability would no doubt require at least

two processors and 1 to 2 million words of primary memory,

9. The system could be operational within one year at a central

site. At this time although any amount of primary memory could

be available, only two PDP-10 Tenex processors need be avail-

able. Over the next few years, more processors and memories

could be added.

10. Research should go along with making such a modular system

laboratory. The general direction would be to explore hard-

ware, software, and theory that made the interconnection of

modules of the above type easily interconnected. In this way,

a system of any type could be constructed easily.

•lO-

THE PMS STRUCTURE OF C.ai

Figure 1 shows a simplified PMS diagram of C.ai. It is a multi-

processor system which allows up to 16 processor or secondary memory

(e.g., drum) ports to be connected to the primary memory. Some of the

ports can be multiplexed between several components. The characteristics

21
of the primary memory are: MOS; 550 ns cycle tlw?; 2 296-bit words

accessible as 74, 148, 222 or 296 bits in a single access. The memory

will be described in more detail below.

The 16 memory modules are interconnected to the 16 processor ports

via a central 74-bit cross-point switch. The main reason for a central

cross-point is to limit the cables from p)Cra to only p+m. Also, by using

a non-bus arrangement, processor and memory modules can be removed while

the system is operating. It must be noted, however, that the weakest

link in the design of C.ai is the switch, and we are beginning to investi-

gate this design. It will most likely be a form of the dual-cross-point

switch (see Bell and Newell, Computer Structures., McGraw-Hill, p. 68).

Current logic technology is ideally suited to the packaging of a

centralized switch. Although it is centralized, the physical packaging

can be carried out to provide independence among the processor and memory

ports. Logically, the memory controls and the processor controls are

quite Independent. By partitioning the switch into four 8x8 switches,

even more independence can be gained.

Another type of switch is used to provide intercommunication among

the processors. This is shown in the lower part of the figure. This

-11-

•H
<d
t • CJ

ü
•u m
0) o
n ^-\

01 -o
0) o •rH w <4-l g •H o 1-4 o e-

w V Ö
M X cd
o
CO M
(0

u SI
o 0) • /-v
M f^O 0)
a W ^ l-i

cd
Ä. 60 to O.
t>0 Ö P «0
(Q •H <U •

cd

p
e
ra

t
om

pu
t

.a
m

os

o y u

u
t>0
n)
•H
•o
w

<u

E

-12.

is a centralized trunk switch with an adequate number of trunks to handle

the traffic among the various components which intercommunicate. The

switch is described in more detail below.

A central computer (C.amos) executes the operating system. It has

some private memory, interconnection to i/o devices, terminals, and

tertiary memory. Two C.amos computers are shown, but only one will be

in use at any time (see below). The other processors are general-purpose

or specialized language processors. Each of these may have a minicomputer

which acts as the control for starting and stopping, maintenance, data

gathering, context switching, etc.

Figure 2 gives a PMS diagram that has sufficient detail for deriving

performance characteristics of the computer. We assume each processor

will cost in the neighborhood of $50,000 to $100,000. The critical

parameter for determining the performance is the number of memory ports

and the processor operation-rate, so that the interference among the

processors can be determined. Each processor is able to obtain up to

296 bits in 550 ns (or 540 megabits/sec). For example, the demand for

memory that a PDP-10 has is roughly two words, each 3.5 lis at 300,000 op/sec.

Thus, a word can be used each 1.25 microseconds or its port needs only 28

megabits/sec. The above system supplies roughly 20 times this amount;

eight words/access and a cycle time of 550 ns contribute to this gain.

Since the eight words are accessed at one time, no use can be made of the

extra words in a normal PDP-10 processor. The Stanford AX Processor, how-

ever, does use up to four 37-bit words in a single access to fill its

cache.

Public primary memory1 -13-

RJ-r
Central, Mp-P cross-point switch3

.A

«PiS -,'-

tf^ti memo
port
control"^

Inter-P
switch3

■/■

/-

I-
^ Ö

special language
processors10

interprocessor messages; 4tertiM-;[
processor control

r.conso 3-

direct «emory pore
-11 (data, addressee)

K Pr,control pore
~Tt« pröfc6ci:«4 (iisec) möWöry L-,

C. an os
spgie.

K

Ms,

.'. P- -/-

Kclock

C(IMP)) links to ARPA Network

Public, primary memory; 2 ~ 2^ words; 74, 148, 222, or 296 b/w; 550 ns/w; MOS
sCentral; cross-point switch; Mp-Pc|Ms dialogues; 16x16; width: 74 bits
Central, trunk switch; inter P dialogues; a 2 trunks |
4Centrai, trunk switch; P-K(Mp.port) dialogues; a 2 trunks / identlcal protocols
^K(Mp.port) Relocation, protection, error correction, erroiT detection; see9

C(Operating-System) - with local primary and secondary memory
7Ms(secondary memory; drum; 1.4 gbits)

Ms

T

^(special i/o interfaces; e.g., TV)

or

i —direct memory port (data, addresses)
K1

•o E.g.,]

|P1

(f—-> control port

\\~\ protected (user) memory port (data, addresses)

.Ck(minicomputer; Ms(100 kwords); T.scope)

^Transducers and tertiary memory - managed by a Ck (e.g., terabit memory)

Figure 2. PMS diagram of C.ai

■ 14-

By using a cache memory the bandwidth into primary memory is sig-

nificantly reduced. In the Stanford processor there is about 95i of the

data in the cache. Executing 4 million instructions/sec, at most, one

word would be required per 125 ns (i.e., 8 million words/sec). Now since

95$ of the data is in the cache, the requirements for primary memory access

are only one access each 20 memory accesses. Thus the effective memory

cycle time is anly one word each 2.5 microseconds. The interference among

ports is therefore negligible. At the very least, i/o devices, such as

the drums, could share a port. In one table we have shown a second pro-

cessor connected to a port (for a total of 20 processors).

COMPUTER PERFORMANCE

Table 1 shows a comparison of C.ai performance with some current

large scale computers. Various attributes of these machines are given in

order to give the reader an idea of the balance of the computer in terms

of memory size, processing capacity and cost. We have also included the
*

measures Roberts has used to compare the performance with these machines.

In some sense, the chart is extremely misleading since C.ai has 20 times

the memory of the next largest machine (STAR). This has been adjusted

in footnote 3 to the table. The computation is based on 36 bit operations.

Using a larger word would increase the performance indicator, though

perhaps not the real performance.

INTERPROCESSOR COMMUNICATION

Interprocessor communication will be carried out over a data bus

similar to DEC's PDP-11 Unibus, with the exception that it would be a
* " ——
Lawrence G. Roberts, Data Processing Technology Forecast, Advanced
Research Projects Agency, April 23, 1969.

in
U
0)
u
3

u
(U

o
X!
u
■rt

o

a
o
0)
•H

a

o

ä

S

ca
a
o
x

03

-<M O

WO
OH)
QJS..EQ

a)
4J
nj ^-\
U in

•r< a.
• o

(U
4J
<0 *~\
»-• m
I 4J

•rl .H

• -9

ttl u

rj in

I U)
•H 4J

• -A

<U to

n) (0
U -O
■ M

•i-i O
• S
a ß

01 /-v
N in

■r) 4J
0) -H

a S
2 •=■

a) m
N -O
•H h
U> O
• > a e

si
u
•a
•rl ^
> &

-15-

oo
o
00

o
oo

o

o
o
IT,

CM

in

«

o

X
o

o

CO

o w
' V£>

o

o o
X X

^-N O ^N
C>l 4J CSJ

^ t

CM
ON

CM

+

i

Q
04

m
x o
lA

• n
o
o
CM
CO

1 A

o
fH

ro VD
X X
/-> o ^. o
N iJ CM o

3 t
r-4

u-(O
i-l \0
CM 00

CM
X
O
1A

O
CM
CO

o
o
CN
00

IT»
CM

m CM

CM
CO

o
CN

in

t

u
o

IW o

(d i
4J M
C/l <

CM
m

00 +

VO
CM

O
CM
VJ3

4'?

O
O
00

CM

O
O
O

o
o
00

VO

o

I

o

rH o
Ol o

VO
i-l VO
(U •H

TJ u (0
O a «
2 u Ü

en

00

vO
o>

in
X

«3-
VO vO

CM

•3-

vO

3 CM
i-l
m

n)

06

u
Q
O

CO

+

<

d

e

OS
«:
H

««-1
O

0)
N
•H
V)

>, »^
O

E
<u

X!
U

60
C

■rl
■U
V)
3 •>-»

"O <
• •

r-l o> M « VO o •
ON m <f

JJ i- in VO
OJ Q) 00

" o .
" en o <

m c\ M
a) P. 00
c 1-1 to
u •r- U CM « U (U
w a D. •« < o
>1 w «a-

.Ü • O VO

o
4J
VI
rt $7

a y -a ra a c o
O- M « 00

o 00 > (r. in CM
M •-< ..
o &! 2c§
Ö o « rH

f-l J3 <«■
I-l o O.
hJ c •rl O
M J: ^ *->

y <U
t^ <u 0.0

r-l H CM
I-l M vO ro en o .
at c ^ /
g •rl

0) t^ m o 01 «v o
u V " CM

U4 y >>
o u .-

c ^ o o
(U en S CM

oi en
«11 a S vt
4J 4J rt u I
tl) a o
c in ©
o ■ «a-

•H So-
U M » r-t « •U -CO-
y M • #>

■H w 10 ^s
IM o O i-l
•i-l o e n)
O £ 9 *J
0) io o
a. • ■n 4-i

CO hJ < v^

■< w n

-16-

dual or multiple trunk bus to Increase bandwidth, decrease response time

and increase reliability, A processor making an interprocessor transfer

would place a request on the bus and the actual transfer would take place

on the trunk that first responded. Each message will be tagged with the

identity of the transmitting processor. It will useful if a processor

can communicate with itself on the bus.

If the proposed interprocessor traffic appears to warrant it, more

than two trunks can be added. In addition, processors can communicate

through shared primary memory.

PRIMARY MEMORY

The characteristics of various memories are given in Table 2. In

this section we are only concerned with primary memory, however.

System Configuration

21
The primary memory Mp(MOS; 550 ns cycle; 2 wds; 296 b/w gives an

overall memory size of about 620 x 10 bits and (because of the 16 ports)

a bandwidth of 8,600 million bits/sec (16 x 296/.550). The access time,

as measured at the processor, would be about 350 ns. The actual memory

word will be 296 bits with a processor specifying which word (74 bits)

or configuration of words it wants. The actual information bits are

expected to number 64 with 10 bits to be used for error correction or

detection at the processor. The 74 bit word would also allow present

36-bit processors, such as the PDP-10 and 1108, to utilize this memory.

The memory will consist of 16 modules and will connect to the processors

through a 74-bit wide cross-point switch. There will be 16 processor

01
o
•rl
iJ
in

•H
u
0)
u
o
m
>J
id

6

o

•rl

0)
r-l

CO
H

-17-
M /-v
4) </>■

t-4 A!
T-l ^
0 o o
^ «1 o <f o -* o o o o o
u u o x o X o o o o o
a <n ci m CM •n CM m m in m
o o
o y

a
•r4 m
45

oo CM
4J o <f in m CO CM
in ä o o CM r^ vO CO a« m I
o^-. • • • * • • • •
o~-u. o o r-l O r-l r-l i-i vO rH

O -< •* o o o VC CM
U '-> o o O CM t-. VO o CO rH
m<3- o o O • o 1^ lO
O A! CO a\ 00 O 00 m Ox
o ^ r-l f-l

OJ o O
r-l o O
3 o o

TS CM 01 CM w
Q vO o < "ö . 'S
S rO o Sig o I u { u «s 1-1 o o o o
01 o X o CM •* O o o o o o s o s
N r-l tH o <»• X rH o CM CM CM CvJ o o

•r-l o .. o II vt vO vO VO vO rH rH
to

01

Al CM ir (-. r-l

o
(d
a
B) o

CM o o o
U U CM M CM O
O <W X ,. X o
o o II O CM

r-l i-H r-l II
>M

ca ^u .Vi"$4J
^ ^ 1 S 5^

0) 4J •rl MM o o o o O g /-s

gg O IT) (3 O a o o o o o u
CO r-l 3 M r-13 M CM CM CM CM CM -rl

ft^ v-^ ^^ • rQ

0) ^N
r-J 4J «1 CO ö
id rt-^ X 3
4-1 H .Q CO o o U VO co m m vo vo r^ O O o o
o • ß • r-t in "O 0^ VO o in oo

CM cS
•d- o vO VO

U -H <--• CO CM r-l vD «d- CM t-^ vo av a.
CM r- CO 00 CM CM

J3
4J ^-v VO
"O M •^^ o>
•rl 4J vo a vO IV S •H CO "t ß vO VO vO vO VO VO vO vO vO Oi 2 1 .a X

00 t»
Ol a\ rH Ol r-l Ol rH 0> rH Cv|

•r) ^ r-l CM CM X CM X CM X CM X in

0) OJ in <f CO
4J CO CO in m 00 in
id <0 • • • • • •
M\ co CO r-l r-l CM o o
•H-i

rH rH

^~N
01 O y y y
(fl 0) u --•> <U 0) s-^. r—N /—s
(U rH s-\ 01 01 01 10 0} 01 oi ca 01 01 0 Ü 01 co to in in a a a d. n a a e a d
o P? in g 01 i d. il dL
id o "? + 0 m o O CM o o o o o o • • i 0

o CM
rH O t-» oo t^ in o • m o ■d- oo <t 00

u ■»-' 00 CO 00 • • CM vo m r-l CM -sf N-^ ^ •^^ r-l r^ r-l ^s v—^ v

UOl
R

f^ounj 4J U co co a a a a •rl •rl

0)
u

P^ ■Ö " /—N o
P id • s-\ ■ CO y

a) o 0) t>0 M 60 K ^■s 1
o X5 • /-s O 0) ^ 73 en

•H i ai a M ^• f—\ 0) s ^ ^v IH
> g S^g •» x <u ^ id »H id
IU 6 • iJ Vi <u ■c v ' rH m r-H
Q 4J rl ^4 O ß on <H 0) <u a, -•»! O 60 o

O > M r-l
£ <u

•rl 4J
o If.

O tji en w a o D< ^
J3 O -rl td J3 m 1 O 9 S3 0 •rl u •rl Ö

1 a B -a o •o "^-^ <n •H | o ^ (i-q H M ^-' M Di

o
o
o

in
ai

■u
co
u

u
IU

01
a
«

n
<u
.c
60
•rl
X!

ß
cd

01
60
CO u o u
01

u

in
O
y

u

o

co y
r- G
(TV (U
rH J3

ä "
•rl >>

4J
^•rl
U in ai a
> a»
•rl TJ
rH
<U <U
■0 rH

o o

m <u o
o
rH 01

0)
co id
r-H
<0- >,

4J C
ui id
f-, y
01

id 3

X!
y •
3 in
in ai

•rl

OJ
4J
•rl

4J 01
0 C
0 01
D'-O

01
id

J2

u u
id 3
60 y
o
U 0)

B
" 3

01
0) 01

cd
id
B ai

•H 01
4J 0)
oi .c
U H

-• (M

01

u
O

I
y
y
id

o
|H
4J
c
o
o

u to o u a

o
01
01
<U
y o u

cd
C

a)
4J oi a
Id <4H -rH

id \
G W •rl

•a
cd

>x
u
cd

•S
u
a.

U
cd
•o
c
o
y
o»
01

U
01

-18-

ports each 74 bits wide. A transfer of more than one 74-bit word in an

access will be done sequentially at a rate of 75 ns per additional 74

bit word for up to four words.

Slower Memory Considerations

Although we have assumed relatively fast MOS memories, slower

memories can be used since the proposed processors have caches. Our

preliminary investigation does not show a significant price decrease as

MOS memory (or other memory) speed decreases. Actually, the switching

system should be designed to operate at a high data rate in order to use

later, faster technology memories as they become available.

Processor Port Control - K(Mp.port)

The local port control is shown in Figure 3. Each processor port

provides access to 2 words (a 24 bit address). The upper 7 bits of the

address specifies one of the 128 relocation registers the address will

use. The relocation register will supply the high order bits of the

physical address and the processor address will supply the low order 17

bits. Since this is a concatenation instead of an addition, this reloca-

tion should only take 50 ns. The relocation registers and other controls

associated with the port are accessible only to the overall operating

system. Various protection type bits might also be included in the memory

port control box to assist the processor. The relocation unit serves

these functions: maintenance, dynamic memory assignment (reconfiguration)

control, protection and sharing among processors, and data parity checking.

-19-

Physical Address

Memory-Switch
S(Mp)

Memory-port
control

K(Mp.port)

physical
address tables

A A
17

control
bits

relocated
block address

read
write
control

Processor

data

74

control
A

error
detect/correc:

7
/

error
control

statistics
control

error
detect/correc:

gen.

address i 74 I*
paritys data-74 bits

port-
excisor
control

link \
to Supervisory Computer

control

p-address

Figure 3. K(Mp.port) Memory-port relocation, error-detection, error-correction
and control.

-20-

The relocation registers will be transparent to each processor.

The relocation registers will serve the function of manual, address

switches on the memory (e.g., on the PDP-10). Thus, no manual switching

need be provided on the individual memory boxes; the same effect is

achiöved by informing the memory control processor to vacate the desired

box and consider it unusable. All relocation and protection, as commonly

found in timesharing system processors, will be included as part of the

processor. The only reason a processor might want to consider the port

relocation registers is to effect 65k word block transfers, i.e., to ask

;-he memory control processor to change addresses, e.g., 128k-192k to

64k-128k.

The statistics control shown is passive. Although not detailed here,

it will be hooked up to provide appropriate information on accesses,

errors, and transfer rates to a measurement unit. Another part of the port

interface is the capability of being exercised at low data rates via the

controlling computer. Thus, data can be transferred via each port from

the control computer. Within each port control there is error correction,

detection hardware. Here, since we assume that some faulty processors

will be attached to the ports, the port control must supply correct data

to the memory in order that other devices (e.g., drums, disk memory) be

able to detect faults.

Circuitry

Currently, Advanced Memory Systems (AMS) is quoting approximately

$160,000 for 256k 37 bit word memory system with an access time of 150 ns

and a cycle time of 400 nanoseconds for delivery in 1972. At those rates

-21-

the 8,192k word memory (74 bits) would cost approximately $9,500,000.

This is a projected price, but it is possible that memory prices will

decrease even more than projected. AMS is the lowest bidder, but there

is some question as to whether they could manufacture a 620 megabit memory

in the time frame desired in addition to their current commitments. Cogar

has quoted a price of $13,100,000 for a similar system for delivery in

1973. The memory prices are quotes for memory systems with TTL-compatible

interfaces. The power dissipation for the AMS system is 180 milliwatts

per 1024 bits or approximately lOOkw for proposed system; support cir-

cuitry will double this to 200kw.

The memory switch will utilize MSI (medium scale integration) logic

whenever possible. The data switch is currently envisioned as utilizing

the Texas Instrument SN74150N 16 bit multiplexor with.a typical data

propagation time of 10 nsec (assuming the data select lines have been

settled for ä 30 nsec). By the time the switch is constructed, faster

circuits, such as Schotky TTL, will probably be available.

Since the switch is. so central, a dual cross-point probably should be

used. This is essentially a compound switch consisting of two cross-point

switches and a (m+p) x S(l-input, 2-output) switch as shown:

.^S(cross-point; mxp]
Mp m-inputs S(m;2)^ ^. S(p;2) p-inputs P

^S(cross-point; mxp)-

The memory switch itself should not exceed $200,000 in cost (parts

and labor). A quick calculation shows that in just the data and address

switching logic, 2800 SN74150N 16 input multiplexors would be needed at

.M.aWa«VWW»TWW^vt»m«WJm^W'^

-22-

a cost of $19,000. This does not include any support circuitry such as

encoders, line drivers, printed circuits, etc. Through future price

reductions and competitive bidding, we might be able to reduce the cost

of the SNTAlSON's to $7,000;.

SECONDARY MEMORY

The choices for secondary memory are (1) mechanical devices (drums,

fixed head discs, etc.), (2) shift register memories, (3) and random

access memory (RAM). Current characteristics for these devices are shown

in Table 2. Mechanical devices will probably hold s. price advantage of an

order of magnitude for several years. It doesn't appear that shift register

memory will become sufficiently cost effective over random access memory.

The following figures assume a 2 to 1 swapping ratio. A secondary

memory system could consist of 20 General Instrument SA 7012-1024-H drums

at $45,000 each for a total of $900,000, in quantities, exclusive of

controller and channels. Judging from smaller, more modest systems, the

secondary storage system should cost approximately $1,300,000 complete.

Such a system would give 1.400 megabits of storage, an average access

time of 8 msec, and a transfer rate of 50 megabits/second.

Initally, the Ms controllers will simply permit multiplexing several

drums into one port. An additional feature that could easily be included

in the secondary memory channel would be a memory-to-memory connection

that would be able to take advantage of the 4-word sequential feature of

the primary memory. Since one wishes to maximize the bandwidth between

the Ms system and Mp, as the system grows to use many drums on several

ports, it will probably be necessary to insert a C(Ms). The Ms - Mt

system might then look like Figure 4.

^ H .w;^ w w.wcEöUHflntraiB»!

-23-

K(Mp.port) K(Mp.port)

K.drum K.drum C(Ms)

Ms.drum Ms.drum Ms.drum Ms.drum C(Mt)—Mt

C(AMOS)

Figure 4. Eventual secondary-tertiary memory structure.

TERTIARY MEMORY

Any storage of programs and data outside the local C.ai environment

will tend to put a fairly heavy transmission load on the current, 50,000 kb

ARPA network. For example, we have assumed average program sizes of

250,000 74-bit words or 18.5 million bits. The transmission of a program

this size on the present ARPA network would require approximately 460

seconds. If a session lasted an hour, about 15 minutes of the hour would

be spent in file transmission. If 4 such users were on the system, then

the whole ARPA network would be swamped.

Clearly, some on-site permanent storage must be provided. Programs

can reside on a tertiary memory until they are brought into either primary

or secondary memory for more rapid access.

'-.'.-'^-r'.r."v-iP"—-~-T f'rn-TTrTi-i-—iiinrim'fnuirniiinnirMnTMiimMM MHJJ.HLIJ] mttm a\i2Tr*wa*&ttaMtMfatVMttimXltXtQ&m&l^^ ü&vratwrww*-*

-24-

OPERATING SYSTEM COMPUTER

C.amos is the ultimate overlord of all physical resources in CVM.

It should have the following characteristics (among others):

- off-the-shelf existence;

- low cost and plugability to permit keeping an on line spare;

- good Interrupt structure;

- already debugged network control program (if possible);

- sufficient speed1,

- word size commensurate with 64;

- ability to address all of C.airMp

- proven reliability;

- local Ms and Mp;

- already existing software to support AMOS development.

Its Mp should be minimal -- only large enough to handle initial

startup data, recovery programs for catastrophic C.ai:Mp failures, and

stand-alone C.ai hardware test programs. Likewise, Its Ms should be

minimal -- only enough to hold startup and recovery information. The

alternative of using a larger Mp(amos) and Ms(amos) is tempting, but

cost-effectiveness demands that C.amos use the main Mp and Ms as much as

possible.

For reliability, two identical C.amos computers are shown in Figure 1.

One of them will remain idle or perform non-essential housekeeping functions

while serving as the spare. It could perhaps be used as a second connec-

tion to the ARPA network to increase bandwidth.

-25-

Exact specification of C.amos will require further refinement of

Cai. It appears, however, that a PDP-11 Model 45 size machine will be

sufficient if enough other minis are us ad for Ms, Mt and network control.

CONSOLE

Scopes would be used to display the overall allocation of resources

to tasks, and the status of the computer. Several scopes might also be

employed for human intervention required in the management of the computer.

Each of the processors would occasionally require a certain amount

of console activity which would be done by small computers as described

in the section on the language processors. Due to the nature of the

switching involved in the individual processors, it might be possible to

use only one small computer to serve several large processors.

-26-

AMOS: A MINIMAL OPERATING SYSTEM FOR C.ai

The following privides an overview and first level design of an

operating system for C.ai. The system is not specified in complete

detail since (a) it is wasted effort to do so at this stage of the total

machine design and (b) much of the information necessary to do so is not

available (e.g., user characteristics).

In a system with multiple active units (processors in the case of

C.ai) in which resources are to be shared there is a spectrum of possible

systems ranging between the extremes of (a) having all control of resources

vested in a single active element and (b) having no distinguished element

and performing allocation by race or bargaining. AMOS is of a classical

design in which ultimate control of all shared resources is in the hands of

a single element (with the exception of the interprocessor bus) and all

non-shared resources (e.g., processors) control themselves.

Likewise, there is a spectrum of possible operating systems ranging

from a highly uniform one in which the user is essentially unaware of the

existence of the multiple active elements that are, in fact, working on

his task to a highly diverse one in which the user of one element is unaware

of the existence of the others. AMOS tends toward the latter extreme.

DESIGN GOALS AND GUIDELINES

While not thoroughly defining the space of systems we are interested

in, the following principles clearly must be observed.

1. Time and effort needed to construct AMOS must be small.
Operating systems often lag and prevent the timely use of
new machines. C.ai is meant to be operational in 2.5 years
so there is little time for bringing up software.

■»:wwMMi^,^cw»WMiwaeowBmwwut^

-27-

2. The functions provided by AMOS must be a minimal set con-
sistent with managing the hardware resources of C.ai. Com-
plicated systems take a long time to build and are more
open to problems.

3. The "users" of AMOS are the operating systems for each
special-purpose P.A. Thus the total operating system is
a two-stage object: an overall operating system (AMOS)
plus distinct operating systems on each processor. In most
cases a human user and/or his program see only one of the
individual systems, not AMOS.

4. Specification and construction of the operating system for
a P.A is up to the group responsible for that processor.

5. AMOS should usurp as few design perogatives as possible.
That is, it should influence only minimally the design of
operating systems and programs on individual P.jJ's. Further,
it should not greatly influence the design of C.ai as a whole in
order that it will be possible in the future to replace AMOS
with a completely different operating system.*

6. It should be possible to build very simple operating systems
on the P.Ä's if desired. They should not have to worry about
physical level i/o and their communications with AMOS should
be as simple as possible.

7. AMOS should be simple. This not only aids construction time
and effort but also understanding (an essential point to
insure correct operation and usage).

FUNCTIONS TO BE PROVIDED

It is easiest to specify what AMOS is to do by listing the major

functions it is to provide. Elaborations of these functions will be

*
C.ai is clearly a unique opportunity for implementing radically new

virtual machines that exploit its parallel and functionally specialized
parts. It is hoped that the computer will be available for research
along this line. The understanding of such a machine, how to break up
a load computationally, the characteristics of the programs run on it,
etc. is so meager at present that initially the only sensible way to use
it is as a collection of independent systems that happen to share some
physical resources. AMOS and its hardware should not unduly impede re-
search on more advanced modes of usage, however.

-28-

provided below in describing their implementation. It is assumed that

a few other minor functions will be needed and can be added without

greatly perturbing the design of C.ai or AMOS.

1. Allocate Mp. Individual processors must be given access to
varying amounts of main msmory. Addressing ranges and access
protection must be set.

2. Allocate and control other on-site memory. Ms/secondary and
Mt/tertiary must be allocated, but control must remain with
AMOS in order to enforce security of parts allocated to dif-
ferent processors (and processes).

3. Handle communication between P.JÄ's and L(ARPA). All i/o other
than to Ms and Mt is assumed to be over the AREA network. In
order to keep the operating systems on the P.Jä'S simple, net-
work communication must be handled by AMOS.

4. Provide system status and accounting information. An on-site
console must be maintained in addition to logging accounting
information.

5. Startup of C.ai and individual P.A's. Occasional cold starts
of the entire system will be necessary. Individual P.Jl's may
come up and go down as well.

6. Movement of files between Mp, Ms, and Mt. P.jl's should not
have to deal with physical level i/o. Further, large stores
must be a shared resource.

7. Provide for sharing of Mp, Ms and Mt by different processors.
AMOS must administer any such sharing.

WORLD VIEWS

An operating system provides a virtual machine. It is thus important

to understand what the system and the users see.

What the User Sees

- a collection of functionally specialized systems with large
memories usable over the ARPA network;

WJmiuummmm**^.—,-™..™.—, __ , „.^-»„^..»^„^„.„„„„^OT^wraaiSSiBBMa!

-29-

- the potential for processes on separate processors to communicate
and share resources;

- a large on-site Ms for temporary use and a very large Mt for
permanent storage of Information.

Hhat an Operating System on a P.A Sees

- a device for allocating and overseeing sharing of Mp, Ms, and Mt;

- a device that will move files between Mp, Ms and Mt upon request;

- a device to handle the mechanics of transmitting and receiving
information over the ARPA network.

What AMOS sees

- P.Jl's competing for Mp, Ms and Mt;

- requests to share resources between processors;

- logical communication channels between P.j&'s and the ARPA network
to establish and maintain;

- files to be created and moved;

- M's to housekeep;

- accounting information to be logged and displayed.

STRUCTURES PROVIDING THE REQUIRED FUNCTIONS OF AMOS

Different structures can be chosen to provide the functions of AMOS.

Those we have selected below seem to be sufficient for the task and con-

sistent with our design objectives,

Mp Allocation

The opaqueness of how Mp allocations to P.Ä's are being used and

their size (64K wds) implies using an extremely simple algorithm. A

P.jjwill send a request to AMOS over the bus to allocate or deallocate

-30-

a page of Mp; the request will Include where in the P.A"s address space

the page is to go. AMOS will check whether or not the P.A is entitled

to another page (a policy decision) if a new one is being requested.

It will then adjust the bounds registers of the P.A appropriately and

signal it of the change over the bus.

A simple algorithm of assigning new pages to physical boxes of Mp

that have the fewest number of active pages seems reasonable. If good

monitoring hardware is built into C.ai, "active" might be defined in

terms of number of accesses; otherwise, it could simply be defined as

pages that are in use. Anything n>ore complicated seems unjustified.

In order that each processor be able to handle large jobs at the

same time, it will be necessary for the operating system on each P.jJ

to release Mp on a second-by-second basis whenever it is free. This can

be handled on a gentlemen's agreement basis with perhaps some monitoring

in AMOS to insure that no P.A hogs too much core. Which algorithm to

use is a policy decision.

Ms and Mt Allocation and Control

As far as a P.Ä is concerned the basic unit of storage will be a file

of arbitrary length. (For efficiency, information actually may be stored

on Ms and Mt in standard block sizes). A ?.A can request AMOS (over the

bus) to create a file; AMOS will check if the P.A can have more space and

if so, create a name for the file and pass it back. (To facilitate storing,

the names should be from a single continuous space.) A P.JL can request

for information to be transferred from Mp to an Ms or Mt file.

WrtfVJ« wmHWirCTM*^«i^«™<wi«i v^^ war o CH-fRH.-*»« MMIIW'HIII JUi MWUiiiiu Jnw wr^sw'.irauta »iwosttSUfW&aaiixs&risiHSKSXirrssiiMt'in «o »»»»njfrfiB.i«^«« ra

-31-

The request can be made with a priority, thus allowing swapping or

paging information to be handled just like any other file only with higher

priority for performing the transfer. Likewise, files can be transferred

from Ms or Mt to Mp. Alternatively, information can be sent and received

over the network directly to a file (see below). Files can be erased by

request.

Note that the P.A's specify where they want their files to reside.

This seems essential since only they will know what they are being used

for. Pricing structure, time limits, and allocation limits can be used

to insure proper migration.

It is assumed that Ms and Mt provide hardware detection of record

and file ends so that transfers of partial files may be made. On the

other hand, record transfer may impose too much additional complexity on

AMOS.

Communication Over the Network

AMOS will know nothing about users. It will have only logical

channels that it can connect between a I'.A and some entity transmitting

messages to C.ai over the network.

AMOS may receive messages on the network from entities for which

it has no logical channel set up requesting access to a given P.A. The

PoJ&may have told AMOS that it will take all comers, only certain ones,

or that it wants to be informed of all requests for connection so that

it can make a dynamic decision. If the requestor cannot be attached,

he will be so informed.

-32-

If he can sign on, he is given a unique i.d. by AMOS and a logical

channel is established to the desired P.A. Until the connection is broken

by the P.A any incoming information headed by that i.d. will be sent to

the proper P. i. (deposited in a section of his Mp or on one of his Ms

files) with a signal going from AMOS to the P.A whenever a transmission

is completed. A dump mode will be available for the transfer of large

blocks of data directly to an Ms or Mt file without interrupting the

P.A until the transfer is finished (even if it takes many network trans-

missions) .

Similarly, a P.A can request a file of information of any size to

be sent out over a given logical channel.

System Status and Accounting

AMOS will record all system resource usage (e.g., Mp, Ms, Mt, T's,

L(ARPA)) by each processor. The information can be displayed in summary

form on a console and made available to the processors if appropriate.

A processor can access the data of another under the usual sharing rules

(see below). It is up to individual processors to record their own usage

and to subdivide their use of system resources among their various users.

Each processor will supply a certain amount of status information

to AMOS upon request in order to produce system-wide status displays.

The content of this Information depends on a more detailed specification

of how individual P.jTs will be used.

Any error checking or internal monitoring information available to

AMOS will be displayed appropriately. AMOS will also be responsible for

utilizing such information to warn of faulty components or potential system

bottlenecks.

„ .,,,., ...,.., ..■ :—^.- ..;■.-:■■

-33-

Initialization

C.amos will have an autoload button that will load its local memory

from a startup disk with a program to initialize Mp bounds registers

and load its main Mp from Ms. Its bootstrap will also be able to retrieve

from its local Ms various debug, checkout, and recovery routines.

C.amos will be able to startup any of the other P.A's by a signal

Over the bus. Once started, however, AMOS has no control over the P.£.

This means that AMOS will have available the operating system (or a proper

bootstrap) for each P.A. In some cases this may include loading a micro-

code store.

File Movement

All file operations are logical (not physical) as described above.

AMOS will have one or more minicomputers that will initiate transfers

between memory hierarchies and perform housekeeping chores.

Resource Sharing

The mechanism for sharing is basically the same for all resources.

Processor A (the owner of a resource) tells AMOS over the bus that pro-

cessor B may have a given type of access to that resource. If later, B

requests that access, it will be granted (unless A has rescinded the access

rights).

In the case of Mp this is implemented by setting bounds registers.

For files AMOS must keep lists of processors (not processes) that can

access given files. It is then up to the processors to control the access

of their individual processes.

-34-

As an example of Mp sharing, P.jL may tell AMOS that P.Jl2 can have

read access to one of its pages, say p.^. P.J^ will communicate directly

wi'.h P.JJ- that it has permitted access to p.... Later, if P.JL requests

access to p,,. AMOS will set one of P.JL's bounds registers to permit
lj l

read sharing. Permission for sharing (or relinquishing by P.^2) can

occur at any time. It is up to P.A, and P.A2 to insure that permission

is not withdrawn precipitously.

PERFORMANCE MONITORING

A computer such as C.ai must have adequate performance monitoring

capabilities integrated into its basic design. Many initial decisions

will require modification as the system matui and usage patterns evolve.

Proper design of Ms and Mt systems, optimal allocation of Mp, and correct

bandwidth to the netwc-^k. are examples of decisions requiring extensive

measurement of usage.

Measurements should occur on a number of levels» Common facilities

such as the L(interprocessor) and the Mp's could be monitored by passive

hardware devices connected to a separate C.pm. This independence would

insulate the PM from changes in AMOS and in the P.A's. C.amos and C.pm

could communicate directly for dynamic control, but other information

would be stored for later analysis. Many items can be measured passively

by: (a) busy-idle bits; (b) registers to read or sample; (c) counters.

AMOS should be able to interrogate C.pm to obtain current data for schedul-

ing and resource allocation and for system status requests from P.Ä's.

Thus the C.pm could have the following features:

-35-

(a) Pc-Mp-Ms type of structure;

(b) reduce its own data and keep current system information avail-
able for AMOS;

(c) write to its cwn slow Ms for later display and analysis.

Some examples of information of interest are: (a) K(Mp.port) errors

could be counted, and transmitted to C.amos, (b) the number of memory

references could be counted and waiting times tabulated, (c) a central

clock may be provided which all P's may access. A central timing facility

might also be included at the clock. In order to keep the traffic low,

a facility such as the clock might broadcast the time so that each pro-

cessor could maintain its own timers (which would undoubtedly be in soft-

ware).

AMOS should have a number of software monitors built into its

modules. Such hooks are best when implemented in parallel with the

operating system. Selected information would be either written by AMOS

or read from registers by C.pm. If AMOS is to be a resource allocator,

some P.A information may be required. Information of this type would

place certain constraints on P.A implementors, but the sharing of common

resources requires some standardization.

Each ?.& should also include its own hardware and software measure-

ment devices with which AMOS can communicate. A mixture of software and

independent hardware monitors integrated into the design of C.ai will

allow for future study of this new structure, and encourage growth based

on a knowledge of actual performance and utilization.

-36-

REALIZATION CONSIDERATIONS

Our goal has been to develop and present a feasible technical solu-

tion to the problem of improving the computational power available to the

ARPA ai community. While we have not performed extensive cost-effective-

ness calculations nor worried about a precise timetable for building C.ai,

we feel that a few comments on these subjects are in order. Clearly a

much deeper and more detailed set of plans and calculations must be prepared

if C.ai is to be built; hopefully, however, what follows will permit a

sound initial judgment to be made as to whether to take the next step in

the process of realizing the design we have presented.

SCHEDULING AND STRATEGY FOR THE PROJECT

The basic strategy of the design is to provide an environment where

a number of parallel efforts can be maintained, none of which is critical.

In Schedule 1 we show the times at which various parts of the computer could

be ready. From the schedule we see there is a deliberate attempt to have

a number of independent ways of achieving success by various processor

alternatives. All alternatives, however, depend on our being able to build

the memory system, which is scheduled to be completed over the first year.

Thus, we have tried to make the memory system the most conservative part of

the design since all else depends on it working. Switches of this complexity

have already been constructed; for example, in one of the early Lockheed

memories attached to a PDP-10. It had 16 ports in each memory which is,

in essence, the major part of the switch. In this case, the switch is

-37-

twice as wide (74 points), and must accept up to four words transmitted

serially. We also proposed that this switch structure be duplicated

centrally so that l/2 can fail or be worked on without bringing the system

down.

Memory would be added slowly, as the processing power is increased.

An initial configuration could be operating in only one year, composed of

the nucleus of the memory (including the secondary memory) together with

some small amount of processing power (two PDP-10 processors, running

Tenex). This configuration would provide Immediate benefit to some users

by having a larger memory. Even more memory could be added If needed.

By proceeding slowly the operation of the computer could also evolve

and the tie with the network could be made gradually. During the second

year of operation the first and second Stanford Al processors could be

integrated to operate with the memory system and the first two proressors.

The necessity for two processors is based on the fact that the facility

should be able to supply a constant resource to its users and, thus, two

processors would be necessary to meet the reliability requirement. At

the end of the second year almost any configuration of processors and

computers would be possible.

CONTINGENCIES AND RESEARCH

The center section of Schedule 1 deals with the scheduling of spe-

cialized processors for languages. Their progress would not influence

the main schedule line to any great extent, but could provide backup for

the extra computing power. If specialized processors prove as valuable as

-38-

a

a
«8

V)

u
o

•v

n)

c

m

«a

ro
t^

m

CO

O
CO
CO
0)
ü
o
n o

•d

CM

•X)
09

3
'S

.r

o

CO

00

CO

."t
CM •rl

Si M a •d o
•i-i U CO
j &g O CO

cw a)
ß o « ti o

•rl

le
rn

5y

s cd O

0)

•r)
CO
>
cd

0)
1-4

•s
iH O
•H rH
CO •
> tu
CO Q

fU
U

CO
0)
4J

t
CO cd

60
<U
4J
a

•ri

^

o
i-4
l-l

V
U
•rl
CO

(U
00
u
CO

1-1

(U
f~l
60
d

•H
O)

CO

U
o

m
4J
U
<U

t o <u u
+J a
CO
u «w
00 o <u
4J 00
d d

•rl •rl

^ 6
•r(
4J

a'
F-»

•d A
I-I •H
•H CO
3 CO

J3 O
fn

CO

+ s
CO

a) co
ooi-i a)
co co u a

CO 60 Ü
a) d a»
CO co &
0) r-l CO i
00

o
n

d
60
•H
CO
(U

-d

'S
CO

M-l
•H
O
CU
OJ
CO

d
•d
cu

X!
O

CO

-39-

we believe they will, then such an approach would pay off and possibly

negate the need for the large processors. Two of the contingencies

(KI10 and a small microprogram-based PDP-10) could no doubt be contracted

to DEC because they would be part of their standard product line.

NEW PROCESSOR ALTERNATIVES

The final line on Schedule 1 shows what we might expect (optimistically)

from a new processor based design. In three years we might have such a

system operating ready for software debugging (assuming that the design

and fabrication had gone on in parallel with the hardware development).

In possibly as early as four years, users might be on the system. (For

example, by comparison, the PDP-11 is now about 2j to bj years old (de-

pending on when you count the start).

The problem with such a design appears to be that it isn't clear why

any company would want to build it. The only company which has both the

resources and the diverse product line strategy is Honeywell. A GE645-

based processor has a large address space and possibly might be considered.

There is some evidence that a straightforward machine based on the

PDP-11 structure, but with large addresses would be useful and could

provide better encoding efficiency than a PDP-10. It might be much easier

to build than the Stanford AI Processor, but if it were not part of a

main product line it would be difficult to get it built. Buying computers

which are part of another product line allows both a much lower cost and

higher reliability (by not having a one of a kind).

-40-

Nevertheless ARPA could still undertake the study of a processor and

possibly even build it at a university. Such a processor would then be

ready to assume the large amount of computing in perhaps three to four

years. The main thrust of the design and fabrication of a processor of

this type would be research, since if it worked we would have significant

fallout, while no harm would be done if it failed because we have no com-

mitment to the design.

NECESSITY TO MODIFY THE STANFORD AI PROCESSOR

In order to obtain an access to a large memory within the next two

to three years, about the only alternative is to use an existing processor

(instruction-set). Although we have not explored the many candidate pro-

cessors, the PDP-10 would probably rate very high, not because of esthetic

reasons, but because of the current software and knowledge of PDP-lO's

within our community. The possibility of using a 360 and/or GE645 might

also be explored since both of these processors exist within the community,

and there is a large amount of software written for them.

Assuming we do intend to use the Stanford AI Processor design, then

there is a necessary and several desirable modifications to it. The

24
necessary modification is the extension of the address space to 2 words.

This might be done in several ways: some form of segmentation, which when

operating, would allow full 36 bit words to be used as addresses; some

means of communicating nicely across processes; here the main problem is

that list structures would point across these process boundaries; the

introduction of instructions for data movement: load, store, load double,

store double, push, popj, execute using a double length address, and a list

-41-

data structure with large pointers. While all of these methods may be

regarded as somewhat ad hoc, they should be sufficient. Thus, if we

compare the modified version with some of the alternative off-the-shelf

processors, making these modifications will probably make the PDP-10 no

worse than the alternatives. Some of the desirable modifications will

deal with list structure manipulation and typed variables. All in all,

it appears from the early explorations about modifications between

K. Greenblatt (M,I.T.) and the Stanford project, that they can be made

without unduly distorting the Stanford design.

ECONOMIES OF SCALE

We have not carried out calculations which would allow one to

decide whether it would be worthwhile making a system smaller than the

one proposed. The considerations for not scaling down the computer to

l/4 the size would be:

1. Fixed operating costs of the laboratory facility (overhead),
engineers, programmers, cooling, lab supplies, space.

■

2. The design task is fixed almost independent of machine size.
Thus, it would be desirable to get as much power as possible
in a single place. This would give us the highest performance/
total cost.

3. Desirability of having a central facility with a very large
amount of processing power attached to a single, large memory.

i

4. Desirability of having a single, very large memory. This would
permit more users through better user-load-averaging. Also,
larger programs could be run.

5. There may be some quantity discount for drums, disks and memory.

6. Higher reliability. All facilities would be duplicated in a
larger computer.

-42-

7. One connection to the ARPA network.

8. As the machine Is scaled down, certain fixed hardware (e.g.,
disk controllers) would have to be duplicated at each site.

These cost advantages tend to be overshadowed sometimes by the pride

of ownership. Everyone would like to have his ownl Indeed, there are

usually strong reasons to have exclusive control of one's research tools.

Also, the high speed devices of some projects could not be used very

easily via the network. (There does seem to be some agreement, however,

that real-time jobs could be broken up to run satisfactorily on a single

large machine, coupled to front end machines via the network.) Lastly,

there Is the Issue that a single machine would be more vulnerable (e.g.,

to power failure, fire) than several smaller machines.

Although the cost/unit of computing has to be smaller with a central

facility, preliminary analysis indicates this cost probably won't be

significantly cheaper than with four facilities. Again, the decision about

the number of sites is coraparitively unimportant and can be postponed

until a first facility is operational.

-43-

CONCLUSIONS

We have given an overall argument as to the feasibility and desir-

ability of building a computer to be used in ai research. It is basically

a very conservative approach built on current computers together with

what we think can be done easily with the technology. We have not assumed

very high performance processors. For example, one processor we think

feasible is the Stanford AI version of the PDP-10. Such a processor should

not require more than two years to develop, and should be replicatable for

in the neighborhood of $100,000.

Given our overall numbers, we think it is worth trying to specify

the next level of detail based on our evolutionary approach. We believe

that an approach that departs from a conventional structure (e.g., by

placing specific interpretation on addressing) will both decrease the

performance and also make the memory too special purpose, thereby eliminat-

ing unspecified future use that might be made of that large facility.

We th/.nk the real point of the structure is that it should be simple,

yet provide as much potential power (bandwidth) as possible, and should

not be very presumptions about how particular future processors would use

the facility. In particular, we strongly believe that additional power

will be gained by developing special purpose processors to be used on

C.ai and that this course should be thoroughly explored.

-44-

APPENDIX 1

DESIGN CONSTRAINTS AND SOME CONSEQUENCES

0. Engage in design construction only li: worthwhile performance and

performance/cost can be shown to materialize.

1. Technology is hard to forecast accurately beyond 3-5 years.

Consequence; Should have machine operating in 2j years,
otherwise we'll have built an obsolete machine. Plan
for some improvement in technology (factor of 4 in
speed, size are possible numbers).

2. Usage is hard to forecast from a design (especially a radical design),

Consequence; Leave many variables to be bound later
(hopefully by user or by software) and expand the
design when use is more apparent.

3. Operating systems take 2 ~ 5 years to design and get operational

once the hardware is specified.

Consequence; Prepare interim methods of operation; prepare
for shock; question the project; keep aspirations low.

4. Certain memory technology costs in next two or three years; (see

Table 2)

Consequence; Probably require all these memories.

5. This must be an ARPA network resource.

Consequences; Don't need terminal handling or unit record io.

Don't need long-term archival and backup storage.

Need a filing system locally for temporary programs, data, etc.
because of bandwidth. Otherwise the response time will include
that of network. Also network could be swamped just transship-
ping large files.

-45-

Allow all contractors to engage in certain kinds of improvements.

High reliability — probably affects more users (say 50 ~ 100
versus 10 ~ 25 at a site).

Multiple users simultaneously.

6. This is a machine for artificial Intelligence research.

Consequences; Variety of specialized devices connected to
it (e.g., robotic equipment); powerful arithmetic processing;
large memory.

7. This is a symbol and list processing machine.

Consequences: Access to very wide words so that different
types of encodings are possible for various languages. The
(memory size)/(memory accessed) ratio is probably large.

8. Examine all techniques,(especially those whichhave been found to work

in hardware and software):

Examples: cache (1 or more);

microprogramming;

hash coding;

highly specialized processors.

9. Design should be *- ^hly likely to materialize.

Consequences; must be understandable;

maximum amount of project parallelism;

minimum amount of interaction among parts
(hence well defined interfaces).

10. Base system performance on easy-to-identify techniques.

Consequences; parallelism in
word length,
processors,
memories;

-46-

specialization of function, although care must be
taken to avoid little used functions;

circuit technology speed.

11, Development time, cost, and performance are related.

cost,
development
time

performance

Therefore it is important to select a machine before diminishing

returns occur.

Consequence: Small processors (also specialized processors).

12. Main cost of system will be memories (primary, secondary and supporting

files).

13. Must have high reliability (availability) otherwise real performance

will be low when averaged over long periods.

Consequences: at least 2 of everything (even with simple
components) to give an overall high uptime;

single error correction may be worthwhile in
memories (subject to analysis);

never turn off power (possibly too stringent),
but a style of design to be violated if too
expensive and design time-consuming;

connect other equipment during operation;

methods of on-line and off-line testing of all
components.

14. Try to minimize the number of specialized components in central part

of design.

Consequences; research in modular systems.

-47-

APPENDIX 2

OUTLINE OF P.L* PROCESSOR DESIGN

The following is an abstract of the report "C.ai (P.L.*) — An L*

Processor for C.ai" by D. McCracken and G. Robertson. It is available

from the Carnegie-Mellon Computer Science Department or the Defense

Documentation Center.

The results of a preliminary design study for a specialized language

processor (P.Ä) for L* are presented. The objective of the study is to

give an example of a specialized processor for C.ai.

The L* processor is to run 20-30 simultaneous L* users with very

large address spaces at a speed improvement of becter than 10 times a

typical PDP-10 L* system. Its cost should be low relative to the memory

resources of C.ai,

Tha design presented is that of an L* central processor (Pc.L*)

with a very low-level instruction set (about the level of typical micro-

code). Pc.L* is time-shared by a mini-computer that sits to the side,

so that each L* user sees himself as running on a base L* processor.

User contexts are switched by swapping processor status information in

Pc.L*.

Each L* user has complete access to the central processor status

through his address space. His machine code (microcode) can appear

anywhere in the large address space, but executes out of a fast cache

memory. It thus runs at microcode speeds. L* programs and data being

interpreted by the machine code are accessed explicitly from a second

-48-

cache memory. The initial L* kernel system will consist of ~ IK of

machine code, with some initial data and available space.

The low-level instruction set of Pc.L* does not contain any of the

more complex instructions (such as floating point arithmetic and byte

manipulation) that usually exist on large general purpose computers.

These capabilities are meant to be written in machine code as needed

by each L* user. He thus gains considerable flexibility in the exact

nature of these higher level operations at the cost of increased program-

ming rffort and somewhat reduced efficiency compared to hard-wired

implementations.

The results of this preliminary design effort, although still un-

clear in spots, shows that a specialized processor could run very large

L* systems on C.ai at 20-40 times the speed of a PDP-10.

ift^-J^^^^^^OMM^^ .-

-49-

APPENDIX 3

OUTLINE OF P.LISP PROCESSOR DESIGN

The following is an abstract of the report "C.ai (P.LISP) -- A

LISP processor for C.ai" by M. Barbacci, H. Goldberg, and M. Knudsen.

It Is available from the Carnegie-Mellon Computer Science Department

or the Defense Documentation Center.

A special processor designed for efficient LISP processing is

described. The processor is micro-programmable and makes heavy use of

a fast scratchpad memory with several special purpose registers (small

function units) and general byte manipulation capabilities. The approach

taken has been to avoid unorthodox schemes of implementation and employs

little in the way of unusually new (and untried) hardware.

Such a conservative approach will enable a fairly good implementation

in a reasonable time. One of the places where efficiency in list pro-

cessing (and in most programming applications) can be enhanced is In the

ratio of instruction fetches/data fetches. To that end two things that

are not usually available were required: wrlteable (up-datable) micro-

code and recursive control of microcode. With them, it is possible to

implement the language interpreter as close as possible to the real

hardware machine. Such a machine could also be a "shell" language pro-

cessor. However, this was not a goal of the design, but rather a by-

product.

The microprogrammed processes include a storage-compacting garbage-

collector, which can be made to operate incrementally in parallel with

user-program execution. This option avoids interruptions in LISP execu-

tion for garbage collection.

